ไฟฟ้าสถิต: แรง สนาม ศักย์ พลังงานศักย์จากประจุ
ไฟฟ้าสถิต: แรง สนาม ศักย์ พลังงานศักย์จากประจุ (1)
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
น้อย
วิชาสามัญ
ออกสอบ
67%
A-LEVEL
ออกสอบ
น้อย
ไฟฟ้าสถิต: แรง สนาม ศักย์ พลังงานศักย์จากประจุ (2)
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
33%
วิชาสามัญ
ออกสอบ
33%
A-LEVEL
ออกสอบ
น้อย
ไฟฟ้าสถิตกับการอธิบายหลักการทำงานของเครื่องใช้ไฟฟ้า และปรากฏการณ์ในชีวิตประจำวัน
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
น้อย
วิชาสามัญ
ออกสอบ
น้อย
A-LEVEL
ออกสอบ
น้อย
ไฟฟ้าสถิต: แรง สนาม ศักย์ พลังงานศักย์จากประจุ (3)
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
น้อย
วิชาสามัญ
ออกสอบ
33%
A-LEVEL
ออกสอบ
น้อย
ไฟฟ้าสถิต: แรง สนาม ศักย์ พลังงานศักย์จากประจุ (4)
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
น้อย
วิชาสามัญ
ออกสอบ
33%
A-LEVEL
ออกสอบ
น้อย
การเปลี่ยนพลังงานทดแทนเป็นพลังงานไฟฟ้า และเทคโนโลยี ที่นำมาแก้ปัญหาหรือตอบสนองความต้องการทางด้านพลังงานไฟฟ้า
PAT
ออกสอบ
น้อย
O-NET
ออกสอบ
น้อย
วิชาสามัญ
ออกสอบ
น้อย
A-LEVEL
ออกสอบ
น้อย

การเปลี่ยนพลังงานทดแทนเป็นพลังงานไฟฟ้า และเทคโนโลยี ที่นำมาแก้ปัญหาหรือตอบสนองความต้องการทางด้านพลังงานไฟฟ้า

ยอดวิว 0

แบบฝึกหัด

EASY

การเปลี่ยนพลังงานทดแทนเป็นพลังงานไฟฟ้า และเทคโนโลยี ที่นำมาแก้ปัญหาหรือตอบสนองความต้องการทางด้านพลังงานไฟฟ้า (ชุดที่ 1)

HARD

การเปลี่ยนพลังงานทดแทนเป็นพลังงานไฟฟ้า และเทคโนโลยี ที่นำมาแก้ปัญหาหรือตอบสนองความต้องการทางด้านพลังงานไฟฟ้า (ชุดที่ 2)

news

การเปลี่ยนพลังงานทดแทนเป็นพลังงานไฟฟ้า และเทคโนโลยี ที่นำมาแก้ปัญหาหรือตอบสนองความต้องการทางด้านพลังงานไฟฟ้า

เนื้อหา

พลังงานทดแทน

ปัจจุบันเรื่องพลังงานเป็นปัญหาใหญ่ของโลก และนับวันจะมีผลกระทบรุนแรงต่อมวลมนุษยชาติมากขึ้นทุกที การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยก็เป็นอีกหนึ่งหน่วยงานที่ให้ความสำคัญในการร่วมหาหนทางแก้ไข ทำการศึกษา ค้นคว้า สำรวจ ทดลอง ติดตามเทคโนโลยีอย่างจริงจังและต่อเนื่องมาโดยตลอด เพื่อเตรียมพร้อมสำหรับการนำพลังงานทดแทนและเทคโนโลยีใหม่ๆในด้านพลังงานทดแทนเข้ามาใช้ในประเทศไทยต่อไป โดยคำนึงถึงทรัพยากรและสิ่งแวดล้อมซึ่งพอจะจำแนกประเภทของพลังงานทดแทนได้ดังนี้

พลังแสงอาทิตย์

ดวงอาทิตย์ให้พลังงานจำนวนมหาศาลแก่โลกของเรา พลังงานจากดวงอาทิตย์จัดเป็นพลังงานหมุนเวียนที่สำคัญที่สุด เป็นพลังงานสะอาดไม่ทำปฏิกิริยาใดๆอันจะทำให้สิ่งแวดล้อมเป็นพิษ เซลล์แสงอาทิตย์จึงเป็นสิ่งประดิษฐ์ทางอิเล็คทรอนิคส์ชนิดหนึ่ง ที่ถูกนำมาใช้ผลิตไฟฟ้า เนื่องจากสามารถเปลี่ยนเซลล์แสงอาทิตย์ให้เป็นพลังงานไฟฟ้าได้โดยตรง ส่วนใหญ่เซลล์แสงอาทิตย์ทำมาจากสารกึ่งตัวนำพวกซิลิคอน มีประสิทธิภาพในการเปลี่ยนพลังงานแสงอาทิตย์ให้เป็นพลังงานไฟฟ้าได้สูงถึง 44 เปอร์เซนต์
นอกจากนี้ การผลิตพลังงานไฟฟ้าจากเซลล์แสงอาทิตย์นับวันจะยิ่งมีความสำคัญมากขึ้นเรื่อย ๆ เนื่องจากการผลิตพลังงานไฟฟ้าจากเซลล์แสงอาทิตย์ เป็นแหล่งพลังงานทดแทนที่สะอาดและไม่มีวันสิ้นสุด แต่ปัญหาสำคัญในการติดตั้งแผงโซล่าเซลล์เพื่อผลิตพลังงานไฟฟ้าจากเซลล์แสงอาทิตย์นั้น คือพื้นที่ที่ใช้ในการติดตั้งแผงโซล่าเซลล์ เพราะพื้นที่ในการติดตั้งแผงโซล่าเซลล์จะต้องเป็นพื้นที่โล่งขนาดใหญ่ ดังนั้นการติดตั้งแผงโซล่าเซลล์แบบลอยน้ำอยู่ในอ่างเก็บน้ำขนาดใหญ่จึงเป็นตัวเลือกที่เหมาะสมเป็นอย่างยิ่ง
อีกทั้งการติดตั้งแผงโซล่าเซลล์แบบลอยน้ำอยู่ในอ่างเก็บน้ำขนาดใหญ่ ยังมีข้อดีมากมาย เช่น ความเย็นของน้ำจะทำให้การทำงานของแผงโซล่าเซลล์มีประสิทธิภาพมากยิ่งขึ้น และแผงโซล่าบดบังแสงอาทิตย์ที่ตกกระทบผิวน้ำ ทำให้ช่วยลดการเติบโตของสาหร่ายใต้น้ำ และลดการระเหยของน้ำในอ่างเก็บน้ำ เป็นต้น  ดังนั้นในหลายประเทศจึงได้มีการออกแบบและก่อสร้างโรงไฟฟ้าพลังงานทดแทนแสงอาทิตย์ที่สามารถติดตั้งไว้บนผิวน้ำในทะเลสาบขนาดใหญ่ได้

พลังงานลม

เป็นพลังงานธรรมชาติที่เกิดจากความแตกต่างของอุณหภูมิ 2 ที่ ซึ่งสะอาดและบริสุทธิ์ใช้แล้วไม่มีวันหมดสิ้นไปจากโลก ได้รับความสนใจนำมาพัฒนาให้เกิดประโยชน์อย่างกว้างขวาง ในขณะเดียวกัน กังหันลมก็เป็นอุปกรณ์ชนิดหนึ่งที่สามารถนำพลังงานลมมาใช้ให้เป็นประโยชน์ได้ โดยเฉพาะในการผลิตกระแสไฟฟ้า และในการสูบน้ำ ซึ่งได้ใช้งานกันมาแล้วอย่างแพร่หลายพลังงานลมเกิดจากพลังงานจากดวงอาทิตย์ตกกระทบโลกทำให้อากาศร้อน และลอยตัวสูงขึ้น อากาศจากบริเวณอื่นซึ่งเย็นและหนาแน่นมากกว่าจึงเข้ามาแทนที่ การเคลื่อนที่ของอากาศเหล่านี้เป็นสาเหตุให้เกิดลม และมีอิทธิพลต่อสภาพลมฟ้าอากาศในบางพื้นที่ของประเทศไทย โดยเฉพาะอย่างยิ่งแนวฝั่งทะเลอันดามันและด้านทะเลจีน(อ่าวไทย) มีพลังงานลมที่อาจนำมาใช้ประโยชน์ในลักษณะพลังงานกล (กังหันสูบน้ำกังหันผลิตไฟฟ้า) ศักยภาพของพลังงานลมที่สามารถ นำมาใช้ประโยชน์ได้สำหรับประเทศไทย มีความเร็ว อยู่ระหว่าง 3 - 5 เมตรต่อวินาที และความเข้มพลังงานลมที่ประเมินไว้ได้อยู่ระหว่าง 20 - 50 วัตต์ต่อตารางเมตร

พลังงานความร้อนใต้พิภพ

พลังงานความร้อนใต้พิภพ [Geothermal - Geo (พื้นดิน) Thermal (ความร้อน)] หมายถึงการใช้งานอย่างหนักจากความร้อนด้านในของโลก แกนของโลกนั้นร้อนอย่างเหลือเชื่อ โดยร้อนถึง 5,500 องศาเซลเซียส (9,932 องศาฟาเรนไฮท์) จากการประมาณการเมื่อเร็วๆ นี้ ดังนั้นจึงไม่น่าแปลกใจเลยว่าแม้แต่พื้นผิว 3 เมตรด้านบนสุดของโลกก็มีอุณหภูมิใกล้เคียง 10-26 องศาเซลเซียส (50-60 องศาฟาเรนไฮท์) อย่างสม่ำเสมอตลอดทั้งปี นอกจากนี้กระบวนการทางธรณีวิทยาที่แตกต่างกันทำให้ในบางที่มีอุณหภูมิสูงกว่ามาก

การนำความร้อนมาใช้งาน

ในที่ที่แหล่งเก็บน้ำร้อนจากความร้อนใต้พิภพอยู่ใกล้ผิวโลก น้ำร้อนนั้นสามารถส่งผ่านท่อโดยตรงไปยังที่ทีต้องการใช้ความร้อน นี่เป็นวิธีการหนึ่งที่ความร้อนใต้พิภพสามารถใช้ทำน้ำร้อนในการทำความร้อนให้บ้าน ทำให้เรือนกระจกอุ่นขึ้น และแม้แต่ละลายหิมะบนถนน
แม้ในสถานที่ที่ไม่มีแหล่งเก็บความร้อนใต้พิภพที่สามารถเข้าถึงได้โดยง่าย เครื่องปั๊มความร้อนจากพื้นดินสามารถส่งความร้อนสู่พื้นผิวและสู่อาคารได้ สิ่งนี้เป็นไปได้ในทุกแห่ง นอกจากนี้เนื่องจากอุณหภูมิใต้ดินนั้นเกือบคงที่ทั้งปี ทำให้ระบบเดียวกันนี้ที่ช่วยส่งความร้อนให้อาคารในฤดูหนาวจึงสามารถทำความเย็นให้อาคารในฤดูร้อนได้

การผลิตกระแสไฟฟ้า

โรงไฟฟ้าพลังความร้อนใต้พิภพใช้บ่อน้ำความลึกสูงสุด 1.5 กิโลเมตร (1 ไมล์) หรือลึกกว่านั้น ในบางครั้งเพื่อให้สามารถเข้าถึงแหล่งสำรองน้ำจากความร้อนใต้พิภพที่กำลังเดือด โรงไฟฟ้าบางแห่งใช้ไอน้ำจากแหล่งสำรองเหล่านี้โดยตรงเพื่อทำให้ใบพัดหมุน ส่วนโรงไฟฟ้าอื่นๆ ปั๊มน้ำร้อนแรงดันสูงเข้าไปในแท็งก์น้ำความดันต่ำ ทำให้เกิด "ไอน้ำชั่วขณะ" ซึ่งใช้เพื่อหมุนกังหันของเครื่องกำเนิดไฟฟ้า โรงไฟฟ้าสมัยใหม่ใช้น้ำร้อนจากพื้นดินเพื่อทำความร้อนให้กับของเหลว เช่น ไอโซบิวทีน ซึ่งเดือดที่อุณหภูมิต่ำกว่าน้ำ เมื่อของเหลวชนิดนี้ระเหยเป็นไอและขยายตัว มันจะทำให้ใบพัดเครื่องกำเนิดไฟฟ้าหมุน

ข้อดีของพลังความร้อนใต้พิภพ

ปั๊มน้ำมันก๊าซไฮโดรเจนในเมืองเรย์จาวิก ซึ่งเริ่มจ่ายเชื้อเพลิงไฮโดรเจนที่นำกลับมาใช้ใหม่ได้ให้กับรถบัส 3 คัน เชื้อเพลิงนี้ผลิตขึ้นจากน้ำที่ใช้พลังความร้อนใต้พิภพ ซึ่งอุดมสมบูรณ์ในประเทศไอซ์แลนด์
การผลิตพลังความร้อนใต้พิภพแทบไม่ก่อมลพิษหรือปล่อยก๊าซเรือนกระจกออกมาเลย พลังงานนี้เงียบและน่าเชื่อถืออย่างที่สุด โรงงานไฟฟ้าพลังความร้อนใต้พิภพผลิตพลังงานประมาณ 90% ตลอดเวลา เมื่อเทียบกับ 65-75% ของโรงไฟฟ้าเชื้อเพลิงฟอสซิล
แต่โชคร้ายที่ถึงแม้ว่าหลายประเทศมีแหล่งสำรองความร้อนใต้พิภพที่อุดมสมบูรณ์ แต่แหล่งพลังงานหมุนเวียนที่ได้รับการพิสูจน์ว่าดีแล้วนี้ถูกนำมาใช้ประโยชน์ต่ำมาก
น้ำร้อนที่ถูกนำไปใช้ในการผลิตไฟฟ้าแล้วนั้น แม้อุณหภูมิจะลดลงบ้าง แต่ก็ยังสามารถนำไปประยุกต์ใช้ในการอบแห้ง และใช้ในห้องเย็นสำหรับเก็บรักษาพืชผลทางการเกษตรได้ นอกจากนั้น น้ำที่เหลือใช้แล้วยังสามารถนำไปใช้ในกิจการเพื่อกายภาพบำบัด และการท่องเที่ยวได้อีก ท้ายที่สุดคือ น้ำทั้งหมดซึ่งยังมีสภาพเป็นน้ำอุ่นอยู่เล็กน้อย จะถูกปล่อยลงไปผสมกับน้ำตามธรรมชาติในลำน้ำ ซึ่งนับเป็นการเพิ่มปริมาณน้ำให้กับเกษตรกรในฤดูแล้งได้อีกทางหนึ่งด้วย

ข้อควรระวังจากการใช้พลังงานความร้อนใต้พิภพ

พลังงานความร้อนใต้พิภพ สามารถนำมาใช้ประโยชน์ได้หลายประการดังที่ได้กล่าวมาแล้ว อย่างไรก็ตามการใช้ประโยชน์จากแหล่งพลังงานความร้อนนี้ แม้จะไม่ก่อให้เกิดผลกระทบที่ร้ายแรงต่อสิ่งแวดล้อม แต่ก็ควรทำการศึกษาเพื่อทำความเข้าใจและหาทางป้องกันผลกระทบที่อาจจะเกิดตามมาได้ ผลกระทบที่อาจเกิดขึ้นจากการใช้พลังงานความร้อนใต้พิภพสามารถสรุปได้ดังนี้
  • ก๊าซพิษ โดยทั่วไปพลังงานความร้อนที่ได้จากแหล่งใต้พิภพ มักมีก๊าซประเภทที่ไม่สามารถรวมตัว ซึ่งก๊าซเหล่านี้จะมีอันตรายต่อระบบการหายใจหากมีการสูดดมเข้าไป ดังนั้นจึงต้องมีวิธีกำจัดก๊าซเหล่านี้โดยการเปลี่ยนสภาพของก๊าซให้เป็นกรด โดยการให้ก๊าซนั้นผ่านเข้าไปในน้ำซึ่งจะเกิด ปฏิกิริยาเคมีได้เป็นกรดซัลฟิวริกขึ้น โดยกรดนี้สามารถนำไปใช้ประโยชน์ได้
  • แร่ธาตุ น้ำจากแหล่งพลังงานความร้อนใต้พิภพในบางแหล่ง มีปริมาณแร่ธาตุต่างๆ ละลายอยู่ในปริมาณที่สูงซึ่งการนำน้ำนั้นมาใช้แล้วปล่อยระบายลงไปผสมกับแหล่งน้ำธรรมชาติบนผิวดินจะส่งผลกระทบต่อระบบน้ำผิวดินที่ใช้ในการเกษตรหรือใช้อุปโภคบริโภคได้ ดังนั้นก่อนการปล่อยน้ำออกไป จึงควรทำการแยกแร่ธาตุต่างๆ เหล่านั้นออก โดยการทำให้ตกตะกอนหรืออาจใช้วิธีอัดน้ำนั้นกลับคืนสู่ใต้ผิวดินซึ่งต้องให้แน่ใจว่าน้ำที่อัดลงไปนั้นจะไม่ไหลไปปนกับแหล่งน้ำใต้ดินธรรมชาติที่มีอยู่ ความร้อนปกติน้ำจากแหล่งพลังงานความร้อนใต้พิภพ ที่ผ่านการใช้ประโยชน์จากระบบผลิตไฟฟ้าแล้วจะมีอุณหภูมิลดลง แต่อาจยังสูงกว่าอุณหภูมิของน้ำในแหล่งธรรมชาติเพราะยังมีความร้อนตกค้างอยู่
    ดังนั้นก่อนการระบายน้ำนั้นลงสู่แหล่งน้ำธรรมชาติควรทำให้น้ำนั้นมีอุณหภูมิเท่าหรือใกล้เคียงกับอุณหภูมิของน้ำในแหล่งธรรมชาติเสียก่อน โดยอาจนำไปใช้ประโยชน์อีกครั้งคือการนำไปผ่านระบบการอบแห้งหรือการทำความอบอุ่นให้กับบ้านเรือน
  • การทรุดตัวของแผ่นดิน ซึ่งการนำเอาน้ำร้อนจากใต้ดินขึ้นมาใช้ ย่อมทำให้ในแหล่งพลังงานความร้อนนั้นเกิดการสูญเสียเนื้อมวลสารส่วนหนึ่งออกไป ซึ่งอาจก่อให้เกิดปัญหาการทรุดตัวของแผ่นดินขึ้นได้ ดังนั้นหากมีการสูบน้ำร้อนขึ้นมาใช้ จะต้องมีการอัดน้ำซึ่งอาจเป็นน้ำร้อนที่ผ่านการใช้งานแล้วหรือน้ำเย็นจากแหล่งอื่นลงไปทดแทนในอัตราเร็วที่เท่ากัน เพื่อป้องกันปัญหาการทรุดตัวของแผ่นดิน

พลังงานชีวภาพ

ได้แก่ การนำของเสียจากสิ่งมีชีวิตเช่นขยะที่เป็นสารอินทรีย์หรือมูลสัตว์ไปหมัก ให้ย่อยสลายโดยปราศจากอ๊อกซิเจน จะได้ก๊าซ มีเทน ซึ่งใช้เป็นเชื้อเพลิงชนิดหนึ่ง ปัจจุบันเกษตรกรผู้เลี้ยงหมู วัวควาย และสัตว์ปีก ได้ใช้เทคโนโลยีที่ทำขึ้นเอง ผลิตก๊าซชีวภาพมาใช้ในครัวเรือนมากขึ้น ทำให้ลดการใช้พลังงานฟอสซิลได้เป็นจำนวนมาก เกษตรกรบางส่วนยังขายมูลสัตว์ให้กับโรงงานผลิตก๊าซชีวภาพเพื่อการพานิชย์ด้วย นอกจากนี้ยังรวมถึงของเสียจากโรงงานแปรรูปทางการเกษตร เช่น เปลือกสับปะรดจากโรงงานสับปะรดกระป๋อง หรือน้ำเสียจากโรงงานแป้งมัน ที่เอามาหมักและผลิตเป็นก๊าซชีวภาพ

พลังงานชีวมวล

เชื้อเพลิงที่ได้จากสิ่งมีชีวิตเช่น ไม้ฟืน แกลบ กากอ้อย เศษไม้ เศษหญ้า เศษเหลือทิ้งจากการเกษตร เหล่านี้ใช้เผาให้ความร้อนได้ เป็นเชื้อเพลิงชีวภาพแบบของแข็ง และความร้อนนี้แหละที่เอาไปปั่นไฟ โดยเหตุที่ประเทศไทยทำการเกษตรอย่างกว้างขวาง วัสดุเหลือใช้จากการเกษตร เช่น แกลบ ขี้เลื่อย ชานอ้อย กากมะพร้าว ซึ่งมีอยู่จำนวนมาก (เทียบได้น้ำมันดิบปีละไม่น้อยกว่า 6,500 ล้านลิตร) ก็ควรจะใช้เป็นเชื้อเพลิงผลิตไฟฟ้าในเชิงพาณิชย์ได้
ในกรณีของโรงเลื่อย โรงสี โรงน้ำตาลขนาดใหญ่ อาจจะยินยอมให้จ่ายพลังงานไฟฟ้าให้กับระบบไฟฟ้าของการไฟฟ้าต่างๆในประเทศ ในลักษณะของการผลิตร่วม (Co-generation) ซึ่งมีใช้อยู่แล้วหลายแห่งในต่างประเทศโดยวิธีดังกล่าวแล้วจะช่วยให้สามารถใช้ประโยชน์จากแหล่งพลังงานในประเทศสำหรับส่วนรวมได้มากยิ่งขึ้นทั้งนี้อาจจะรวมถึงการใช้ไม้ฟืนจากโครงการปลูกไม้โตเร็วในพื้นที่นับล้านไร่ ในกรณีที่รัฐบาลจำเป็นต้องลดปริมาณการปลูกมันสำปะหลัง อ้อย เพื่อแก้ปัญหาระยะยาวทางด้านการตลาดของพืชทั้งสองชนิด อนึ่ง สำหรับผลิตผลจากชีวมวลในลักษณะอื่นที่ยังใช้เป็นเชื้อเพลิงได้ เช่น แอลกอฮอล์ จากมันสำปะหลัง ก๊าซจากฟืน(Wood gas) ก๊าซจากการหมักเศษวัสดุเหลือจากการเกษตร และขยะชุมชน (ก๊าซชีวภาพ) หากมีความคุ้มค่าในเชิงพาณิชย์ก็อาจนำมาใช้เป็นเชื้อเพลิงสำหรับผลิตไฟฟ้าได้เช่นกัน

พลังงานน้ำ

พื้นผิวโลกถึง 70 เปอร์เซนต์ ปกคลุมด้วยน้ำ ซึ่งมีความสำคัญยิ่งต่อสิ่งมีชีวิตทั้งหลาย น้ำเหล่านี้มีการเปลี่ยนสถานะและหมุนเวียนอยู่ตลอดเวลา ระหว่างผิวโลกและบรรยากาศอย่างต่อเนื่อง ซึ่งเรียกว่า วัฏจักรของน้ำ น้ำที่กำลังเคลื่อนที่มีพลังงานสะสมอยู่มาก และมนุษย์รู้จักนำพลังงานนี้มาใช้หลายร้อยปีแล้ว เช่น ใช้หมุนกังหันน้ำ ปัจจุบันมีการนำพลังงานน้ำไปหมุนกังหันของเครื่องกำเนิดไฟฟ้าในโรงไฟฟ้าพลังน้ำเพื่อผลิตไฟฟ้า
พลังงานจากขยะ
ขยะชุมชนจากบ้านเรือนและกิจการต่างๆ เป็นแหล่งพลังงานที่มีศักยภาพสูง ขยะเหล่านี้ส่วนใหญ่เป็นมวลชีวภาพ เช่น กระดาษ เศษอาหาร และไม้ ซึ่งสามารถใช้เป็นเชื้อเพลิงในโรงไฟฟ้าที่ถูกออกแบบให้ใช้ขยะเป็นเชื้อเพลิงได้ โรงไฟฟ้าที่ใช้ขยะเป็นเชื้อเพลิง จะนำขยะมาเผาบนตะแกรง ความร้อนที่เกิดขึ้นใช้ต้มน้ำในหม้อน้ำจนกลายเป็นไอน้ำเดือด ซึ่งจะไปเพิ่มแรงดันของเครื่องกำเนิดไฟฟ้า
โรงไฟฟ้าพลังงานจากขยะ
ประเทศไทยประสบปัญหาการจัดการขยะชุมชนมาช้านาน จากการเติบโตทางด้านเศรษฐกิจและสังคมอย่างรวดเร็ว จึงส่งผลให้เกิดปัญหาขยะเพิ่มมากขึ้น ในระยะแรกการฝังกลบเป็นวิธีที่นิยมกันมา แต่ปัจจุบันพื่นที่สำหรับฝังกลบหายากขึ้น และบ่อฝังกลบยังก่อให้เกิดมลภาวะตามมา น้ำเสียจากกองขยะ ทำให้น้ำบนดินและน้ำบาดาลไม่สามารถนำมาบริโภคได้ อีกทั้งกลิ่นเหม็นจากกองขยะก็รบกวนความเป็นอยู่ของชาวบ้าน
จากปัญหาการฝังกลบขยะทำได้ยากขึ้น การกำจัดโดยการเผา เป็นวิธีที่ไม่อาจหลีกเลี่ยงได้อีกต่อไป การเลือกเทคโนโลยีที่เหมาะสม เพื่อให้เกิดผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อมน้อยที่สุด และเป็นประโยชน์จากขยะมากที่สุด น่าจะเป็นทางเลือกที่นำมาใช้
ปริมาณขยะที่มากมายนี้ส่งผลต่อสภาพแวดล้อมและความเป็นอยู่ของสังคมมากมาย การคัดแยกขยะจะมีส่วนช่วยลดปริมาณขยะในส่วนที่สามารถนำกลับมาใช้ใหม่ได้ ประหยัดงบประมาณในการทำลายขยะ สงวนทรัพยากร ประหยัดพลังงานและช่วยให้สิ่งแวดล้อมดีขึ้นได้ ประเทศไทยมีปริมาณขยะชุมชนเพิ่มขึ้นโดยตลอด หากไม่มีการนำขยะไปใช้ประโยชน์ ในสัดส่วนที่มากขึ้นในปี 2558 จะมีปริมาณขยะต่อวันถึง 49,680 ตัน หรือ 17.8 ล้านตัน ต่อปีปัจจุบันมีการคิดค้นเทคโนโลยีกำจัดขยะที่สามารถแปลงขยะเป็นพลังงานและใช้ ผลิตกระแสไฟฟ้าได้แก่
  • เทคโนโลยีการฝังกลบ และระบบผลิตก๊าซชีวภาพจากหลุมฝังกลบขยะ (Landfill Gas to Energy)
  • เทคโนโลยีการเผาขยะ (Incineration)
  • เทคโนโลยีการผลิตก๊าชเชื้อเพลิงจากขยะชุมชน (Municipal Solid Waste or MSW)โดยการแปรสภาพเป็นแก๊ส (Gasification)
  • เทคโนโลยีย่อยสลายแบบไม่ใช้ออกซิเจน (Anaerobic Digestion) หรือการหมัก
  • เทคโนโลยีผลิตเชื้อเพลิงขยะ(Refuse Derived Fuel : RDF) โดยการทำให้เป็นก้อนเชื้อเพลิง
  • เทคโนโลยีพลาสมาอาร์ก (Plasma Arc) ใช้ความร้อนสูงมากๆจากการอาร์ค
  • เทคโนโลยีการแปรรูปขยะเป็นน้ำมันเชื้อเพลิง เช่นวิธีการ pyrolysis (การกลั่นและการสลายตัวของสารอินทรีย์ในรูปของของแข็งที่อุณหภูมิ ประมาณ 370-870 องศาเซลเซียส ในภาวะไร้อากาศ)
ข้อดีของการผลิตไฟฟ้าจากขยะ
คือ เป็นแหล่งพลังงานราคาถูก ช่วยลดปัญหาการกำจัด ขยะแต่ก็มีข้อจำกัดเช่น โรงไฟฟ้าขยะมักได้รับการต่อต้านจากชุมชนที่อยู่ใกล้เคียง เทคโนโลยีบางชนิดใช้เงินลงทุนสูง มีค่าใช้จ่ายในการจัดการขยะให้เหมาะสมก่อนนำไปแปรรูปเป็นพลังงาน ต้องมีเทคโนโลยีที่เหมาะสมในการจัดการกับฝุ่นควันและสารที่เกิดขึ้นจากการเผาขยะ อีกทั้งข้อจำกัดทางด้านการเป็นเจ้าของขยะ เช่น ผู้ลงทุนตั้งโรงไฟฟ้าอาจไม่ใช่เจ้าของขยะ (เทศบาล) ทำให้กระบวนการเจรจาแบ่งสรรผลประโยชน์มีความล่าช้า
โดยเชื้อเพลิงที่ใช้ในโรงไฟฟ้าก็คือ แก๊สมีเทน ซึ่งได้มาจากการย่อยสลายของกองขยะและสิ่งปฏิกูลตามธรรมชาติ ซึ่งจะสามารถลดการปล่อยแก๊สที่ทำให้เกิดภาวะเรือนกระจกจากการเผา และยังสามารถลดการใช้เชื้อเพลิงซากดึกดำบรรพ์ (Fossil fuel) ที่จะนำมาใช้ในการผลิตไฟฟ้าได้อีกด้วย โดยทางประเทศเกาหลีใต้กล่าวว่า โรงไฟฟ้าพลังงานขยะจะสามารถลดการนำเข้าน้ำมันของประเทศได้เป็นจำนวนมาก รวมถึงการลดปริมาณการปล่อยก๊าซเรือนกระจกได้กว่า 1.37 ล้านตันต่อปี
ที่เมืองบัลโม ประเทศสวีเดน ไฟฟ้าที่ใช้ประมาณ 20 เปอร์เซนต์ มาจากการเผาขยะ โรงไฟฟ้าที่ใช้ขยะเป็นเชื้อเพลิง จะนำขยะมาเผาบนตะแกรง ความร้อนที่เกิดขึ้นใช้ต้มน้ำในหม้อน้ำจนกลายเป็นไอน้ำเดือด ซึ่งจะไปหมุนกังหันของเครื่องกำเนิดไฟฟ้า (เหมือนกับโรงไฟฟ้าอื่นๆ)
"ที่ผ่านมาเรารวบรวมขยะ คัดแยก และปรับปรุงคุณภาพ เพื่อนำขยะชนิดต่าง ๆ เข้าสู่การรีไซเคิลและนำกลับมาใช้ใหม่ แต่จะมีขยะอีกจำนวนที่ไม่สามารถรีไซเคิลได้ แต่พอมีโรงงานไฟฟ้า ปัญหาดังกล่าวหมดไป เพราะขยะต่าง ๆ จะนำมาใช้เป็นเชื้อเพลิงขยะ (refuse derived fuel) ที่ผ่านการปรับปรุงคุณภาพ ให้เกิดค่าความร้อนสูง นับเป็นการสำรองพลังงานไว้ใช้ ซึ่งหัวใจหลักของพลังงานสะอาดอยู่ที่ความสามารถในการรวบรวมไว้ แบบประหยัด และปรับปรุงคุณภาพให้ได้ความร้อนที่นำไปใช้ให้เกิดประโยชน์สูงสุด จากนั้นเข้าสู่การปรับปรุงคุณภาพ เพื่อนำมาใช้เป็นพลังงานเชื้อเพลิงทดแทน ที่มีคุณภาพสูงด้วยเทคโนโลยีที่มีความปลอดภัยสูง ด้วยมาตรการการควบคุมมลพิษที่ไม่ส่งผลกระทบต่อสภาพแวดล้อม ไฟฟ้าที่ได้จากเชื้อเพลิง RDF มีความสามารถในการผลิตกระแสไฟฟ้าถึง 1 เมกกะวัตต์ ซึ่งเพียงพอต่อการใช้งานได้ในชุมชนขนาดเล็กถึง 300 หลังคาเรือน นับเป็นพลังงานสะอาดที่มีค่าความร้อนสูง และไม่ส่งผลกระทบต่อสิ่งแวดล้อม
เตาเผาชีวมวล ในกระบวนการผลิตไฟฟ้าจากขยะไม่ว่าจะจากอะไรก็แล้วแต่ มันต้องใช้เตาเผาระบบปิดซึ่งก็มีหลากหลายแบบซึ่งขึ้นกับการออกแบบให้สอดคล้องกับวัตถุดิบที่จะนำไปเข้าเตา เพื่อที่จะได้ควบคุมปริมาณแก๊สที่ได้จากการเผาในอุณหภูมิสูง โดยแก๊สที่ผลิตได้เราเรียกรวมๆกันว่าแก๊สชีวมวล หรือ จะเรียกว่าซินแก๊ส Syngas ก็ได้ครับ แต่ผมชอบคำหลังมากกว่า โดยทั่วไปในการผลิต Syngas เราจะได้แก๊สมีเทน, คาร์บอนไดออกไซด์, ไฮโดรเจน, คาร์บอนมอนอกไซด์ รวมไปถึงน้ำด้วย ตามหลักการสันดาปแล้วในการเผาไหม้อะไรก็แล้วแต่จะจำแนกได้เป็นสองแบบคือ สันดาปแบบสมบูรณ์ กับไม่สมบูรณ์ ใช่ไหมครับ ซึ่งในการเผาไหม้จะออกมารูปไหนก็แล้วแต่ปริมาณออกซิเจน (ก๊าซช่วยให้ไฟติด) ถ้ามีมากเกินพอจะได้ก๊าซคาร์บอนไดออกไซด์ แต่ถ้ามีน้อยเราก็จะได้ก๊าซคาร์บอนมอนอกไซด์ออกมาด้วย

พลังงานจากสาหร่าย

เมื่อเปรียบเทียบน้ำมันที่สกัดจากสาหร่ายกับน้ำมันจากปาล์ม จะพบว่า สาหร่ายสามารถผลิตน้ำมันได้มากกว่าปาล์มถึง 100 เท่า ส่วนกากสาหร่ายที่เหลือจากการสกัดน้ำมัน ยังสามารถแปรรูปเป็นอาหารสัตว์ที่มีโปรตีนสูงได้อีกด้วย พลังงานจากสาหร่ายจึงเป็นอนาคตของพลังงานที่น่าสนใจ และปลอดภัยกับโลกของเรา

แหล่งพลังงานทดแทน เพื่อตอบสนองการต้องการไฟฟ้าในอนาคต

1. พลังงานเซลล์แสงอาทิตย์จากห้วงอวกาศ (Space-Based Solar Power)

จากข้อเท็จจริงที่ว่า พลังงานแสงอาทิตย์กว่า 55-60% นั้น ไม่สามารถผ่านชั้นบรรยากาศของโลกมาได้ ดังนั้น การผลิตไฟฟ้าจากโซลาร์เซลล์ที่อยู่บนพื้นโลกจึงใช้พลังงานจากแสงอาทิตย์ได้ไม่เต็มที่ นอกจากนี้ การผลิตไฟฟ้าบนพื้นโลกยังมีข้อจำกัด เพราะผลิตได้เฉพาะในช่วงกลางวัน พื้นที่ตั้งก็ต้องเป็นพื้นที่เปิดโล่ง สภาพภูมิอากาศก็ต้องเหมาะสม ทำให้บางประเทศไม่สามารถผลิตพลังงานจากแสงอาทิตย์ได้ ด้วยข้อจำกัดนี้ จึงมีผู้คิดค้นว่าหากสามารถติดตั้งโซลาร์เซลล์นอกโลก เช่นเดียวกับการติดตั้งเซลล์แสงอาทิตย์ของดาวเทียมแล้ว ข้อจำกัดเหล่านี้จะหมดไป อีกทั้งยังสามารถผลิตไฟฟ้าได้อย่างมหาศาลอีกด้วย
ปัจจุบันนักวิจัยจึงมีความพยายามที่จะทดลอง วิจัยหาความเป็นไปได้ ที่จะติดตั้งโซลาร์เซลล์ในอวกาศ เพื่อผลิตไฟฟ้าและส่งพลังงานที่ผลิตได้กลับมายังสถานีพลังงานบนพื้นโลกในรูปแบบของคลื่นไมโครเวฟ โดยให้แน่ใจว่าการส่งพลังงานดังกล่าวจะไม่เกิดการสูญเสียพลังงาน และไม่ส่งผลกระทบใด ๆ ต่อโลก
ซึ่งก็มีความคืบหน้าเกี่ยวกับการทดลองวิจัยในเรื่องนี้ โดยเมื่อเดือนมีนาคม ปี 2015 สำนักงานสำรวจอวกาศญี่ปุ่น (JAXA) เปิดเผยว่าพวกเขาประสบความสำเร็จในการแปลงกระแสไฟฟ้าขนาด 1.8 กิโลวัตต์ให้เป็นไมโครเวฟ หลังจากที่พวกเขาส่งพลังงานแบบไร้สายเป็นระยะทาง 50 เมตรได้แล้ว
นอกจากนี้ ในปีนี้ (2019) จีนก็เป็นอีกหนึ่งประเทศที่มีความพยายามที่จะทำการทดลองผลิตไฟฟ้าจากโซลาร์เซลล์จากห้วงอวกาศ โดยล่าสุดได้เริ่มทดลองตามแนวคิดนี้แล้วที่เมืองฉงชิ่ง ทางตะวันตกเฉียงใต้ของประเทศจีน บนพื้นที่กว่า 33 เอเคอร์ ด้วยทุนสนับสนุนเริ่มต้นที่ 15 ล้านเหรียญฯ เพื่อทำการทดสอบหาวิธีการที่ดีที่สุดในการส่งพลังงานจากวงโคจรในห้วงอวกาศรอบโลกมายังพื้นโลก

2. พลังงานจากร่างกายมนุษย์ (Human Power)

ผู้เชียวชาญหลายคนเชื่อว่าวิธีการที่ง่ายที่สุดในการสร้างพลังงานหมุนเวียน คือ ผ่านร่างกายของมนุษย์เอง โดยแนวคิดนี้มาจากแนวคิดที่ว่า ในปัจจุบันอุปกรณ์ไฟฟ้าต่าง ๆ ใช้ไฟฟ้าที่น้อยกว่าในอดีตมาก ดังนั้น การผลิตไฟฟ้าขนาดเล็กก็เพียงพอที่จะจ่ายเป็นพลังงานให้กับอุปกรณ์อิเล็กทรอนิกส์ขนาดเล็กจำนวนมากได้ โดยผลิตพลังงานผ่านการเคลื่อนไหวของร่างกายเราเอง เพียงแค่ใช้ระบบที่จะสามารถรวบรวมและแปลงพลังงานได้
ซึ่งนักวิจัยจากสหราชอาณาจักรได้พัฒนาอุปกรณ์พยุงหัวเข่า ที่สามารถรวบรวมอิเล็กตรอนในขณะเดินไว้ โดยทุกครั้งที่เดิน หัวเข่าโค้ง โลหะแบบใบพัดจากอุปกรณ์จะมีการสั้นสะเทือนเหมือนสายกีตาร์ และเกิดการผลิตกระแสไฟฟ้าขึ้น สามารถนำไปใช้กับอุปกรณ์ที่ใช้พลังงานไม่มาก

3. พลังงานคลื่น (Wave Power)

ความคิดที่จะนำพลังงานคลื่นมาใช้นั้นมีแนวคิดมานานแล้ว ซึ่งทางเทคนิคนั้นคลื่น คือรูปแบบที่เกิดขึ้นจากพลังงานลมที่พัดผ่านทะเล พลังงานคลื่นถูกวัดเป็นกิโลวัตต์ (KW) ต่อหนึ่งเมตรของแนวชายฝั่ง โดยชายฝังทะเลของสหรัฐฯ นั้น มีศักยภาพพลังงานคลื่นประมาณ 252 พันล้านกิโลวัตต์ชั่วโมงต่อปี
ปัจจุบันมีกว่า 5 ประเทศ ที่พยายามดำเนินการสร้างฟาร์มผลิตไฟฟ้าจากพลังงานคลื่น หนึ่งในนั้นที่นำไปปฏิบัติ คือประเทศโปรตุเกส ที่ได้ตั้งฟาร์มผลิตไฟฟ้าจากพลังงานคลื่นในเชิงพาณิชย์เป็นแห่งแรกในโลก ตั้งแต่ปี 2008 มีกำลังผลิตติดตั้งรวม 2.25 เมกะวัตต์

4. พลังงานไฮโดรเจน (Hydrogen Power)

ไฮโดรเจนเป็นก๊าซไม่มีสี ไม่มีกลิ่น และมีมากถึง 74% จากทั้งหมดในจักรวาล ในขณะที่บนโลกพบได้เฉพาะเมื่อรวมกับออกซิเจน คาร์บอน และไนโตรเจน โดยหากต้องการใช้ไฮโดรเจนจะต้องแยกออกมาจากองค์ประกอบอื่น ๆ ซึ่งก๊าซที่ได้จะให้พลังงานสูง แต่เป็นก๊าซที่ไม่มีมลพิษ
ดังนั้นจึงมีความพยายามที่จะพัฒนาเซลล์เชื้อเพลิงที่แปลงไฮโดรเจนให้เป็นพลังงานไฟฟ้า เพื่อนำมาใช้เป็นแหล่งพลังงานสำหรับยานยนต์ไฟฟ้า เครื่องบิน ยานพาหนะอื่น ๆ รวมถึงเป็นพลังงานที่ใช้ในบ้านและอาคาร ปัจจุบันนี้ผู้ผลิตรถยนต์รายใหญ่ ค่ายญี่ปุ่นอย่าง โตโยต้า ฮอนด้า และฮุนได ได้มีการลงทุนวิจัยในเทคโนโลยีที่ใช้ไฮโดรเจนเป็นพลังงานอย่างต่อเนื่อง

5. พลังงานจากกากนิวเคลียร์ (Nuclear Waste Power)

อะตอมยูเรเนียมเพียงห้าเปอร์เซ็นต์เท่านั้นที่ถูกนำไปใช้ในปฏิกิริยานิวเคลียร์ฟิชชัน ส่วนที่เหลือจะถูกเก็บเพิ่มเข้าไปยังคลังขยะนิวเคลียร์ มีกากของเสียจากกัมมันตรังสีกว่า 77,000 ตัน ที่ถูกเก็บสะสมจากโรงไฟฟ้านิวเคลียร์ของอเมริกา ในขณะที่เครื่องปฏิกรณ์เร็ว ซึ่งเป็นเครื่องปฏิกรณ์นิวเคลียร์ขั้นสูงที่ได้รับการพัฒนาขึ้นใหม่ มีประสิทธิภาพที่สูงขึ้นกว่าเครื่องปฏิกรณ์แบบเดิม และสามารถแก้ปัญหานี้ได้ในอนาคตข้างหน้า ซึ่งจะทำให้การใช้ยูเรเนียมที่มีอยู่เดิมมีประสิทธิภาพมากขึ้น สามารถใช้พลังงานจากแร่ยูเรเนียมได้ถึง 95% ของเชื้อเพลิงพลังงานนิวเคลียร์ที่ผลิตได้
จากแนวคิดที่ต้องการนำกากนิวเคลียร์ที่มีเก็บไว้ปริมาณมหาศาลมาใช้ผลิตพลังงานทางเลือก ทำให้ทาง ฮิตาชิ ได้ออกแบบเครื่องปฏิกรณ์เร็ว Gen-IV ที่เรียกว่า PRISM ซึ่งเป็นโมดูลเครื่องปฏิกรณ์นวัตกรรมพลังงานขนาดเล็ก ที่สามารถเปลี่ยนกากนิวเคลียร์ให้กลายเป็นพลังงานได้ และยังช่วยทำให้ Half Life ของกัมมันตภาพรังสี (ระยะเวลาที่สารสลายตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิม) เหลือเพียง 30 ปีแทนที่จะเป็นพันปีด้วย

6. พลังงานแสงอาทิตย์ที่ติดตั้งได้ในทุกพื้นผิว (Embeddable Solar Power)

เทคโนโลยีที่สามารถฝังหรือเคลือบเซลล์แสงอาทิตย์ลงบนพื้นผิวของวัตถุต่างๆ ในลักษณะที่โปร่งแสงไม่สามารถมองเห็นได้ แต่สามารถรับแสงอาทิตย์และแปลงเป็นพลังงานไฟฟ้าได้ แนวคิดนี้ ปัจจุบันถูกพัฒนาอย่างรวดเร็ว โดยคาดว่าจะสามารถนำมาเคลือบบนพื้นผิวของอุปกรณ์อิเล็กทรอนิกส์ เช่น หน้าจอคอมพิวเตอร์ สมาร์ทโฟน หรือพัฒนาเพิ่มเติมสำหรับการใช้งานในรูปแบบอื่น ๆ อาทิ เคลือบบนหน้าต่าง หรือกระจกของอาคาร เพื่อเป็นแหล่งผลิตไฟฟ้าให้แก่อาคาร เป็นต้น

7. พลังงานชีวภาพจากสาหร่าย (Algae Power)

สาหร่ายถือเป็นแหล่งพลังงานที่น่าประหลาดใจมาก เพราะมันอุดมไปน้ำมัน ที่สามารถดัดแปลงพันธุกรรมเพื่อผลิตเป็นเชื้อเพลิงชีวภาพได้โดยตรง แม้น้ำเสียจะเป็นอุปสรรคต่อการเจริญเติบโตของพืช แต่มันกลับมีประสิทธิภาพสูงในการปลูกพืชชนิดนี้ โดยในพื้นที่ขนาดหนึ่งเอเคอร์ สามารถให้ผลผลิตได้สูงถึง 9,000 แกลลอน ดังนั้น เชื้อเพลิงจากสาหร่ายจึงถือเป็นเชื้อเพลิงชีวภาพที่สามารถปลูกและสร้างขึ้นได้

8. กังหันลมแบบลอยบนอากาศ (Flying Wind Power)

ฟาร์มกังหันลมตามแนวคิดนี้จะเป็นกังหันลมที่ติดตั้งลอยตัวอยู่สูงในระดับเดียวกับตึกระฟ้า หรืออยู่สูงเหนือระดับพื้นดินที่ 1,000 – 2,000 ฟุต เพื่อรับความแรงลมที่แรงกว่าห้าถึงแปดเท่าของระดับความแรงลมแบบติดตั้งแบบทาวเวอร์ และกังหันเหล่านี้จะผลิตพลังงานได้สองเท่าเมื่อเทียบกับกังหันลมขนาดใกล้เคียงกันที่ตั้งแบบทาวเวอร์

9. พลังงานฟิวชั่น (Fusion Power)

ฟิวชั่น เป็นกระบวนการเดียวกันกับการเกิดขึ้นของดวงอาทิตย์ และมีศักยภาพที่สามารถผลิตพลังงานได้แบบไม่มีที่สิ้นสุด อีกทั้งไม่ปล่อยมลพิษ หรือก๊าซเรือนกระจก และไม่มีการคุกคามจากการหลอมละลายแบบนิวเคลียร์ ซึ่งแตกต่างจากเครื่องปฏิกรณ์นิวเคลียร์ฟิชชั่นในปัจจุบัน ฟิวชั่นทำงานโดยการหลอมรวมไอโซโทปไฮโดรเจนสองอัน คือ ดิวทีเรียมและทริเทียมซึ่งมีอยู่มากมาย