การแก้อสมการที่เกี่ยวข้องกับค่าสัมบูรณ์
สามารถแก้ได้โดยใช้นิยามของค่าสัมบูรณ์หรือใช้ทฤษฎีบทต่อไปนี้
1.) ตัวอย่าง จงหาเซตคำตอบของ
วิธีทำ จากทฤษฎีบทจะได้ว่า (หารอสมการด้วย -3 และกลับเครื่องหมาย)![]()
(หารอสมการด้วย -3 และกลับเครื่องหมาย)
2.) ตัวอย่าง จงหาเซตคำตอบของ
วิธีทำ
จะแก้อสมการโดยใช้นิยาม โดยแยกออกเป็น 2 กรณีดังนี้
กรณีที่ 1
ถ้าจะได้
![]()
ดังนั้น
ในกรณีนี้จะได้
![]()
หาผลตัด (intersection) ของเงื่อนไข
และค่าของที่ได้จากการแก้อสมการ
![]()
จะได้
กรณีที่ 2
ถ้าจะได้
![]()
ดังนั้น
ในกรณีนี้จะได้
หาผลตัด (intersection) ของเงื่อนไข![]()
และค่าของที่ได้จากการ
แก้อสมการจะได้
จากกรณีทั้งสอง จะได้เซตคำตอบคือ
3.) ตัวอย่าง จงหาเซตคำตอบของ
วิธีทำ
เนื่องจากและ
![]()
ดังนั้นหากยกกำลังสองทั้งสองข้างอสมการยังคงเป็นจริง
นั่นคือ